Multivariable control of a debutanizer column using equation based artificial neural network model inverse control strategies

نویسندگان

  • Nasser Mohamed Ramli
  • Mohamed Azlan Hussain
  • Badrul Mohamed Jan
چکیده

The debutanizer column is an important unit operation in petroleum refining industries as it is the main column to produce liquefied petroleum gas as its top product and light naphtha as its bottom product. This system is difficult to handle from a control standpoint due to its nonlinear behavior, multivariable interaction and existence of numerous constraints on both its manipulated and state variable. Neural methods have been traditionally employed. In this work we propose to use an equation based MIMO (Multi Input Multi Output) neural network based multivariable control strategy to control the top and bottom temperatures of the column simultaneously, while manipulating the reflux and reboiler flow rates respectively. This equation based neural network model represented by a multivariable equation, instead of the normal black box structure, has the advantage of being robust in nature while being easier to interpret in terms of its input output variables. It is implemented for set point changes and disturbance changes and the results show that the neural network based model method in the direct inverse and internal model approach performs better than the conventional PID method in both cases. & 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network

The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...

متن کامل

Composition Prediction of a Debutanizer Column using Equation Based Artificial Neural Network Model

Debutanizer column is an important unit operation in petroleum refining industries. The design of online composition prediction by using neural network will help improve product quality monitoring in an oil refinery industry by predicting the top and bottom composition of n-butane simultaneously and accurately for the column. The single dynamic neural network model can be used and designed to o...

متن کامل

Composition Prediction of a Debutanizer Column

Debutanizer column is an important unit operation in petroleum refining industries. The design of online composition prediction by using neural network will help improve product quality monitoring in an oil refinery industry by predicting the top and bottom composition of n-butane simultaneously and accurately for the column. The single dynamic neural network model can be used and designed to o...

متن کامل

Simulation and Control of an Aromatic Distillation Column

In general, the objective of distillation control is to maintain the desired products quality. In this paper, the performances of different one point control strategies for an aromatic distillation column have been compared through dynamic simulation. These methods are: a) Composition control using measured composition directly. This method sufferes from large sampling delay of measuring de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 194  شماره 

صفحات  -

تاریخ انتشار 2016